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For a bathymetry consisting of parallel bottom contours, wide-angle parabolic 
models are developed to describe the diffraction of linear water waves. The first 
model, developed by operator correspondence, extends the validity of conventional 
forms of the parabolic model for wave angles up to 70" from the assumed wave 
direction. Through the use of Fourier decomposition, wave models valid to 90" are 
developed for three different lateral boundary conditions. By application, it is shown 
that the diffraction of waves through gaps or around structures is governed by the 
initial wave condition at  the structure, which can be expanded into progressive and 
evanescent wave modes. Away from the structure, the wave field consists of only the 
progressive wave modes, which disperse according to their direction of propagation, 
the water depth and Snell's Law. Examples are shown for oblique waves through a 
gap, directional seas past a breakwater, a plane wave with varying crest amplitude, 
and finally for the diffraction of waves into a channel. 

1. Introduction 
The parabolic method for wave propagation has proven to be very effective in 

providing a convenient and rapid method for the calculation of the surface wave field 
over water of varying depths, including such important phenomena as refraction and 
diffraction, e.g. Radder (1979), Booij (1981), Kirby & Dalrymple (1983, 1984) and 
Liu & Tsay (1984). There is a significant drawback of the method, however, in that 
it requires that the waves propagate (nearly) in a given direction (taken here to be 
the x-direction). This restriction limits the application of the method, particularly 
when the transmission of the wave motion past an obstacle is desired, as often strong 
diffraction occurs in the rear of the obstacle. As an example, Kirby & Dalrymple 
(1986) shows an analytic solution to a simple parabolic model for waves behind an 
offshore breakwater. Their solution is similar to a Fresnel approximation for light 
passing through a slit, yielding far-field results that are reasonable, but the near-field 
results are in error. 

There are several methods for the development of wide-angle approximation 
models. Here, Fourier transforms are used to treat the case of waves propagating in 
water depths characterized by parallel bottom contours. 

This paper will first provide the background for parabolic models, valid for 
constant depth, illustrating the limitation a t  present on the propagation directions 
of the waves. A wide-angle model will be developed for this case. In $3, a new model 
for variable depth, based on eigenfunction decomposition is derived. Section 3 also 
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illustrates the results of the model in several idealized situations, such as waves 
through a breakwater gap, and $ 4  discusses the interpretation of wave diffraction, 
using the Fourier decomposition. 

2. Background 
For constant-depth water, Mei & Tuck (1980) developed a linear parabolic model 

for use with waves propagating past slender bodies. Their model is developed from 
the Laplace equation by expressing the velocity potential @ as 

@(x, y, x ,  t )  = A(x, y) f ( z ,  h) ei(lcx--wt), (2.11 

where 
cosh k(h + x )  

coshkh ‘ 
f ( z ,  h) = 

The amplitude A varies spatially owing to the presence of the body, and k and w are 
the wavenumber and angular frequency of the wave. The coordinate system is 
oriented with the x- and y-axes in the horizontal plane and z points upward from the 
still water surface. It is assumed that the waves will propagate primarily in the +x- 
direction. 

The velocity potential @ must satisfy the usual linear boundary-value problem for 
water waves which gives the Laplace equation for the potential. The wavenumber k 
must satisfy the dispersion relationship, which relates the wave angular frequency w 
to the water depth h, and k :  

w2 = g k  tanhkh. (2.3) 

Substituting the assumed form of @ into Laplace’s equation, we obtain an equation 
for the amplitude: 

A,,+2ikA,+Ayy = 0. 

Mei & Tuck showed by scaling x and y by the length of the slender body, L, that the 
A,, term may be dropped provided that kL $ 1. This leaves us with 

(2.4) 

2ikA,+Ayy = 0. (215) 

This is the simple parabolic approximation to (2 .4) ,  which provides some obvious 
advantages, including the reduction in the number of boundary conditions necessary 
for a solution and a significant computational advantage in that this parabolic 
equation is easier to solve than the elliptic equation. 

A graphic interpretation of the validity of the parabolic method is obtained 
(following Claerbout 1985) by assuming a plane-wave solution, propagating at an 

where 1 = k cos 8 and m = k sin 19, and 8 is the angle between the wave propagation 
direction and the x-axis. Substituting (2 .6)  into the parabolic equation, we have 

2k( l -k)+m2 = 0. (2 .7)  

The relationship between 1 and m is a parabola. On the other hand, from the Laplace 
equation (or (2 .4) ) ,  we have the exact relationship between the wavenumber 
components : 

which describes a circle. The parabolic model only has the same geometric 
relationship when m = 0. These two relationships are shown in figure 1. 

12+m2-k2 = 0, (2.8) 
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FIGURE 1. Comparison of parabolic-model wavenumber relationships to the (unit circle) exact 
solution. -----, simple parabolic model (2.5); -.-.-, Booij model (2.9); - a  .-. .- (2.16). 

One measure of the error in the parabolic equation is the deviation of the parabolic 
curve from the circle. For a given m, the parabolic method tends to overestimate 1, 
except in the vicinity of 8 = 0, where 8 is the wave propagation angle to the x-axis. 
This overestimation means that waves with a given m will not be turned towards the 
y-axis as much as they should. If an error in 1 is defined as (Z-l,)/l, x 100%, where 
1, is the exact value of 1 for a given m, then the errors can be quantified. The simple 
parabolic model can accurately predict the propagation of plane waves with angles 
up to 43", without creating more than a 5 %  error in 1. This angle is shown as O1 in 
figure 1. 

Booij (1981) developed a wide-angle parabolic model, extending the original 
parabolic equation of Radder (1979) for variable water depth to wider wave angles. 
For constant water depth, this model is 

2ikAx + A,, + iAx,,/2k = 0. (2.9) 

Dingemans (1983) and Kirby (1986a) provide a justification for Booij's model in 
terms of a (1, 1) Pad6 approximant of the exact relationship (2.8). As shown in fig- 
ure 1, Booij's correction permits wider propagation angles than the simple parabolic 
model. Using the error criterion given above, waves are adequately modelled for up 
to 8, = 56.5" from the x-axis, a 13.5" improvement. A numerical model of this 
equation (even including other terms to account for changes in water depth, for 
example) can be conveniently developed using a Crank-Nicolson technique (Booi j 
1981 ; Kirby & Dalrymple 1983, 1984). 

Kirby (19863) provides a (2,2) Pad6 approximant, which, by use of operator 
correspondence, can be written as 

(2.10) 

This equation is reasonably accurate out to large angles (70"). Table 1 shows 
predicted values of wavenumber in the y-direction (m/k) as a function of l/k. 
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l / k  m / k =  ( l - ( l / k ) z ) i  m / k  (2.10) m / k  (2.11) mlk (2.16) 

0 1 .o 1.051 46 1.11333 1.059 77 
0.2 0.979079 1.000 0 1.038 27 1.0000 
0.5 0.86602 0.86852 0.87912 0.86288 
0.8 0.6 0.6000362 0.60064 0.598 18 
0.9 0.43589 0.435 89 0.435 95 0.43545 
1 .o 0 0 0 0 

TABLE 1.  Comparison of the wide-angle equations to the exact relationship 

McAninch (1986), studying the propagation of acoustic waves, used an integrating 
factor of eaikx to integrate (2.5) by parts. This yields equations with as many terms 
in A as desired, with an integral error term a t  the end. For example, we can 
examine 

(2.1 1 )  

This equation can be shown to be exact for plane waves ; however, the integral term, 
which is neglected, is as large as the last term and McAninch’s equations do not 
resemble the expansions given above. Column 4 of table 1 shows the wavenumbers 
calculated by this approach. The method is not as accurate as those given 
previously. 

Kirby (1986b) additionally utilized a minimax approach to find the best 
approximation for waves propagating a t  large angles from the x-direction. This 
approach gave up the exact solution for waves propagating directly in the x-direction 
in order to provide better accuracy for waves propagating a t  wider angles to the x- 
axis. His modified parabolic equation reads 

2ib, Azyy 
k 

+2k(ao- 1) A = 0 (2.12) 2ikAz + 2(b, -a,) A,, - 

where the values of a,, a, and b, are found by requiring the error in 1 be minimized 
over a given range of wave angles. For example, for 0 < 0 < 60°, Kirby found a, = 
0.998213736, a, = -0.854229482, and b, = -0.383 183081. (Note that the values 
from Booij’s approximation yield a, = 1, a, = -0.75 and b, = -0.25.) The deviation 
of a, from unity indicates the error present for waves propagating in the x-direction. 
Here the wavenumber in the x-direction is multiplied by a,, resulting in a wave that 
propagates faster than the exact solution ; however, the discrepancy will make itself 
known only after long distances. The results of (2.12) a t  large angles are shown by 
Kirby (19863) to be approximately as accurate as those of (2.10). This accuracy is 
obtained without extending the numerical complexity of the equations beyond the 
level commensurate with the (1,  1 )  Pad6 form (2.9). 

2.1. A heuristic development of a constant-depth wide-angle model 

A parabolic model, valid for large wave angles, should have a wavenumber 
relationship which approximates a circle. Following Claerbout, we solve the exact 
(2.8) for 1 and express it by a binomial expansion, 

(2.13) 
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(The parabolic equation, solved for I, yields the first two terms of this series. A model 
to be valid for wide angles of propagation clearly needs to incorporate more terms in 
this binomial expansion.) 

Using the method of operator correspondence, we can determine the governing 
equation for the wavenumber relation in (2.13). With $, = il$ and $, = im$, we can 

corresponding derivatives term by term. The governing equation replace I and m by 
is then 

Again replacing $ by the expression with A (2.1), we obtain 

(2.14) 

(2.15) 

This equation is a wide-angle parabolic approximation for constant depth (k fixed). 
We can develop another form of this equation by replacing A,, with - 2ikA,, which 
is the lowest-order approximation : 

2ikA,+A +---... A X Y Y  iAXYYYY = 0. 
vu 2k 4k3 

(2.16) 

Examining the errors generated by these last two approximations when compared 
to the exact solution, (2.16) with four terms and the x-derivatives is more accurate 
than (2.15), again with four terms. In  fact, the last equation is nearly as good as the 
(2, 2) Pad6 approximant of Kirby, whik (2 15) ic: mmedmtht,ter than t h e  RMy 
approximation (the 5% error level occurs a t  69"). The comparison of (2.16) with 
previous parabolic models is shown in figure 1 and in table 1. Despite the reasonable 
agreement, with 8, = 72", we can conclude that many terms must be included in a 
binomial expansion for high accuracy a t  large wave angles and that the substitution 
of -2ikA, for A,, provides greater accuracy in the wave modelling. 

.. 

3. A solution for wide-angle diffraction over a variable topography 
I n  this section, we shall derive a model valid for angles of propagation up to 90" 

and permit the depth to vary in the x-direction, in order to study the simultaneous 
diffraction and refraction of waves. The governing equation is the mild-slope 
equation developed by Berkhoff (19721, which has been used in the variable-depth 
parabolic models of Radder (1979), Kirby & Dalrymple (1983) and Liu & Tsai (1984). 
The equation governs the horizontal variation of the velocity potential @, written as 
@ = #(x, y)f(x, h) exp (-iwt) (here $ plays a similar role as A(x, y) in the previous 
section, but i t  absorbs the exp (ikx) which was factored out before) : 

V*CCgW~+k2CCg# = 0, (3.1) 

where C = w/k,  C, = w k .  (3.2) 

The dispersion relationship (2.3) is also needed to relate w and k. The mild-slope 
equation is exact for deep, shallow and constant-depth water and Booij (1983) has 
shown that it is valid for intermediate depths as long as the depth does not change 
too rapidly over a wavelength. If the velocity product CC, does not vary in the y- 
direction, then the Fourier transform of (3.1) in the y-direction leads to 

(CCg~,) ,+(k2-A2)CCg~ = 0, (3.3) 
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where the circumflex denotes a transformed variable and h is the continuous Fourier 
parameter. This equation can be split by assuming 

d(x, A)  = 8+ + 8-, (3.4) 

where 8+ is the transformed potential describing the forward-propagating waves and 
8- describes the backscattered waves. Further we assume that we can split (3.3) into 
the following coupled first-order equations : 

& = i(k2-h2)i@+F, 8; = -i(k2-A2)i&-F, (3.5) 

where F ( x ,  A)  is an unknown function. Substituting these expressions into (3.3) yields 
F :  

- [CCg(k2 - A2)i], 
F(x ,  A )  = (8+-&). 

2CCg(k2-P)i 

It can be shown by back-substitution that (3.5) and (3.6) yield (3.3) identically and 
thus the splitting introduced here does not introduce the type of approximations 
associated with the pseudo-operators in the parabolic equation method. Neglecting 
the assumed small backscattered wave (&), we obtain 

(3.7) 

Expanding the last term and multiplying through by 2CC, puts the above 
equation into the more familiar parabolic form : 

This equation can be solved analytically, which, after the inverse Fourier transform, 
is expressed as 

eihg dh f ( x ,  h) e-iwt, (3.9) 
27c 

where the depth-dependency term, f, is as defined in (2.2). The bracketed term 
contains the shoaling and refraction coefficients associated with gradual water depth 
changes (e.g. Dean & Dalrymple 1984), with the subscripts 0 indicating initial 
conditions at x = 0. In  this solution, the d(h) is the angular spectrum of the wave 
field (Booker & Clemmow 1950; Stamnes et al. 1983), which is the Fourier transform 
of the initial condition a t  x = 0,  in terms of the Fourier parameter, A. 

For constant depth, the above equation simplifies to 

l *  
@+(x, y, z, t )  = A(h) ei(k2-A2)'2 eihy dhf(z, h)  ePiUt (3.10) 

This equation shows that the wave potential a t  any location is composed of an 
infinite number of wavelets, each with amplitude, A(h) dhl(2.n) and travelling in the 
direction I3 given by 

tan0  = / I / ( P - A ~ ) ~  

Introducing 8 into (3.10) yields 
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which is a form analogous to a directional wave spectrum. The analogy holds only for 
cases where the initial condition a t  x = 0 is defined over a small interval (Booker & 
Clemmow 1950) and where all the evanescent modes for which the magnitude of A 
exceeds k are neglected. 

We can compare (3.10) to the solution obtained from the simple parabolic 
approximation (2 .5)  which is (Kirby & Dalrymple 1986) 

@+(x, y, Z, t )  = - d ( h )  exp ik 1 -- x eiAg dhf(z, h) ePiwt, 
:nrm { ( ;J 1 

which results from approximating the square-root term in (3.10), leading to the 
small-angle restrictions discussed in $2. We note that the solutions of the parabolic 
models do not have evanescent modes ; waves with h > k also propagate freely in the 
solution domain (Kirby 1986b). 

In  water of variable depth, for the simple case of a single wave train, the multiple- 
scales solution of Mei, Tlapa & Eagleson (1968) is obtained readily for the initial 
conditions : 

and 
‘1 

d(A) = 2n6(h-h0)A,,j 

A(0,  y) = A ,  eiAog 
(3.11) 

with A, = k sine,, the projection of the wavenumber on the y-axis. However, for 
more difficult problems, involving complicated initial conditions, the solution is more 
easily solved quasi-numerically. Here we use discrete Fourier transforms, which 
impose periodic lateral boundary conditions in the y-direction. The initial conditions 
d ( h )  are obtained along the initial row (x = 0) ,  consisting of N columns, by using 
a fast Fourier transform (FFT) on the digitized values of A(0,  (m- 1)  Ay), where 
m = 1 to  N .  Then for each x and y location, q5+ is computed using the integrand of 
(3.9), with the argument of the exponential computed using a simple Euler 
integration in x. To determine the final wave potential on a row, the inverse FFT is 
used. 

The evolution of the wave field is in part governed by the decay of evanescent 
terms in (3.9). The FFT of the initial condition yields wave components with values 
of h ranging from zero to a maximum of n/Ay (the Nyquist wavenumber for the given 
digitization in the y-direction). Many of these wavenumbers do not correspond to 
progressive waves as they exceed k in magnitude. These waves decay exponentially 
in the propagation direction. Only those waves for which IAI < k persist far into the 
domain. (Therefore care must be taken to choose the Ay and the number of terms in 
the FFT. For example, for plane waves over constant depth, very few terms are 
needed if the desired wave corresponds to one of the h in the FFT, A, = {2nm/(NAy), 
m = 1 , 2 , 3 ,  ...}. If not, then N must be large enough so that the evanescent modes 
have negligible amplitude.) 

With the FFT approach, the wave field far from the y-axis is composed simply of 
a finite number of plane waves travelling in different directions, each with an 
amplitude and phase given by the initial condition a t  x = 0. 

3.1. Constant-depth so1ution.s 
In order to verify the model, it is compared to existing solutions for constant depth. 
Three cases are studied : plane waves, the finite-length wavemaker problem and 
waves around an island. 
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With the initial conditions (3.11), which is the projection of a plane wave on the y- 
axis, the solution is 

qx, y, z ,  t )  = A ,  ei(tz-&zf(z, h) ei(hot’--wt) (3.12) 

where f is as defined in (2 .2 ) .  This equation is the exact solution for plane waves 
travelling at  an angle, 8 = sin-’(A,/k), to the x-axis; there is no difficulty with large 
angles, and the propagation angle may extend to 90”. Column 1 of table 1 for the 
exact solution is valid for this solution as well. The relevant governing equation for 
constant depth is (3.8) without the second and fourth terms, which result from depth 
variations. 

In  Dalrymple & Greenberg (1985), the problem of a finite-length wavemaker is 
given for the exact linear three-dimensional boundary-value problem. For the initial 
conditions, 

(3.13) 

where it is assumed that the amplitude of the velocity associated with the progressive 
wave is unity. (No information is obtainable about the vertical evanescent modes in 
the present model, since we restricted the vertical dependency by the f ( z ,  h)  factor. 
Stamnes (1986, 3 19.1) presents these modes.) 

From (3.9), (3.12), we obtain 

@J0, y, z ,  t )  = - A(A) i(k2-A2)i eihv dAf(z, h)  e-iwt. (3.14) 
27c l s ”  -a, 

Therefore, dZ(0, A )  = i(k2-A2)+A(A) 

and 
- 2i sin (A ,  - A )  L A(A) = 
(A,-A) (kZ-A2)$ . 

(3.15) 

Substituting into the equation for @, we have 

or, by the convolution theorem, 

L 

@(x, y, z ,  t )  = ;iJ-, eiAcHt) (k[x2+ (y-c) 2 1 t ) dcf e-iwt. (3.17) 

This solution is identical to the result in Dalrymple & Greenberg for the progressive 
wave mode, which was obtained for the full three-dimensional problem. A Green- 
function solution to the same problem is presented in Appendix A. 

The initial condition for waves behind a straight breakwater of length 2L is given 

by 

(3.18) 

This problem is complementary to the wavemaker problem above ; its solution, from 
Babinet’s Principle in optics, is the plane-wave solution with the wavemaker solution 
subtracted from it. The result is a Rayleigh-Sommerfeld approximation to light 
passing through a gap, in that the reflection on the upwave side of the structure is 
neglected. This solution is more physically correct than that provided by Kirby & 
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Dalrymple (1986), as the wide-angle model is used and, further, the correct velocity 
boundary condition is used, rather than a zero potential condition along the 
breakwater. 

3.2. Diffraction in domains that are periodic in the lateral direction 

For laterally periodic domains, the problem is simplified somewhat, as the diffracted 
wave spectrum becomes discrete rather than continuous in A. The complex finite 
Fourier-transform pair becomes 

Y (3.19a) 

and 

where @(x, Y, 2 ,  t )  = @(x, y+2a,  2 ,  t )  (3.20) 

and h = x/a.  (3.21) 

Following the same procedure as above, allowing for variable depth in the x-direction 
only, yields 

I n  this case, again, there is only a finite number of progressive waves that describe 
the wave field away from the y-axis. 

3.2.1. Periodic gaps in breakwaters 

The wavemaker problem, as specified in (3.13) is analogous to waves through a gap 
in a breakwater, when the Kirchhoff approximation is made. Carrying out the 
matching a t  x = 0 yields 

(3.23) 

where L is the half-width of the gap. For speed in computation, the fast Fourier 
transform is used. The initial conditions on the wave potential are approximated by 
an FFT of a top-hat function (of length corresponding to the gap width) ; then each 
wavenumber was multiplied by denominator in (3.15). The final velocity was then 
normalized to unity. 

The resultant wave field was calculated for four different sloping bottoms, which 
are taken to  be varying linearly in the x-direction. The wavemaker, lying along the 
y-axis in 10 m depth, has a length of 100 m. The incident wave field has a 9 s wave 
period and a 45" angle of incidence. The value of A along the wavemaker is taken as 
unity and N = 128, Ax = Ay = 5 m. I n  figure 2,  the variation with bottom slope of 
the transmission coefficient (defined as the ratio of the local wave amplitude to the 
incident wave amplitude), corresponding to the value of 0.6, is shown. As the bottom 
slope increases from zero, the 0.6 contour elongates in the x-direction and bends 
towards the x-axis, as a result of wave refraction and shoaling on the slope. For the 
steepest slope the contour is not closed; it opens to encompass the entire y-axis as 
shoaling has become more influential than diffraction in the shallow water. 

A measure of the bottom slope is the ratio, Vh/k ,  h,, where the subscripts denote 
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FIGURE 2. Effects of refraction and shoaling on the transmission coefficient (0.6) for periodic 

breakwater gaps. k, is the wavenumber at the breakwater, k, = 0.07688 m-l. 

FIGURE 3. Instantaneous wave field behind periodic breakwater gaps on a sloping beach. The line 
denotes a wave ray, emanating from the centre of one of the gaps. Depicted area is 692.48 m (y- 
direction) x 405.75 m (%-direction). 

values a t  x = 0. The mild-slope equation was derived with the assumption that the 
ratio is much less than unity. The four values for the figure are 0, 0.0162, 0.0260 and 
0.0308. 

In figure 3, the wave field associated with the steepest bottom slope is shown. The 
influence of wave refraction is clear, with the maximum of the diffraction pattern 
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FIGURE 4. Instantaneous wave field behind an offshore breakwater created by two intersecting 
wave trains. The breakwater length is 386 m (in the y-direction) and the displayed area is 1016 m 
wide. 

turning towards the shoreline normal. The influence of the periodic boundary 
conditions is also apparent as the waves from the down-wave gap have intruded into 
the figure. The wave ray yfx), shown in the figure, was determined independently 
using the method outlined in Mei (1983), 

(3.24) 

which was solved by a Runge-Kutta integration. The diffracting wavetrain follows 
the wave ray very well. 

3.2.2. Intersecting waves past a breakwater 
The specification of the incident wave field can be quite general. As a simple 

example, two synchronous wavetrains are assumed to be incident on a breakwater 
(386.5 m in length, lying on the y-axis) by replacing the exponential term in the 
initial condition (3.18) with a cosine. In figure 4, the waves (period is 9 s) propagate 
a t  30" to each side of the x-axis, creating a short-crested sea state in the absence of 
the breakwater. Behind the breakwater, centred in the middle of the y-axis, the two 
shadow zones cast by the two wavetrains result in a long-crested sea state in these 
zones, as only one of the wavetrains is blocked by the breakwater. 

Extension to a truly directional sea state behind a breakwater composed of many 
frequencies is straightforward. It is a matter of superimposing the requisite number 
of wavetrains, with the appropriate random phases. 
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FIGURE 5. Instantaneous wave field for the example of plane-wave amplitude variation. 
Displayed area is 640 m x 375 m. 

3.2.3. A eariation in crest elemtion 

The effect of diffraction on a crestwise variation of wave amplitude is examined 
by superimposing a hyperbolic variation onto a normally incident wave, propagating 
over constant depth. The initial wave amplitude is described by 

A ( 0 ,  y) = 1 + 2 sech2 (ay), (3.25) 

where 01 is 0.2. Again, the wave period is 9 s and the water depth is 10 m. The 
resulting water-surface elevation and the transmission coefficient are shown in 
figures 5 and 6. The effect of curvature in the wave amplitude a t  the outset causes 
the waves to change direction. This can be examined by examining the eikonal 
equation for the mild-slope equation, obtained by substituting 

$ = A els (3.26 a )  

into (3.1), where A ( x ,  y) and S(z, y) are both real: 

V .  (CC, V A )  Ivs12 = k2+ 
CG,A ’ 

(3.26 b )  

For constant depth, k is constant and the curvature of the wave crest in the y- 
direction results in the wave propagating slightly faster a t  the peak of the crest 
perturbation. On the side slopes of the perturbation, the crest curvature is of the 
opposite sign and the wave slightly slows there, resulting in a wave form that 
develops into a ‘uj’-shape as it propagates away from the origin. This is evident in 
figure 5. The result of this change in direction is a spreading of the wave height and 
wave energy away from the x-axis. 

The influence of the amplitude on the wave direction and celerity was first noticed 
by Biesel (1964) and codified in this form by Battjes (1968). Both authors examined 
the effect as applied to Sommerfeld’s semi-infinite-barrier problem (see Penney & 
Price 1952). 
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FIGURE 6. Transmission coefficient for the example of plane-wave amplitude variation. Contour 
levels have been multiplied by 10. 

3.3. Diffraction in a channel 

Diffraction into a channel with impermeable sidewalls (at y = _+a) becomes simpler 
mathematically as separation of variables may be used to  solve the problem, which 
now has the lateral boundary conditions 

@&x, f a ,  z ,  t )  = 0. (3.27) 

The solution is easily obtained by separating the solution into orthogonal odd and 
even parts, each of which is a Sturm-Liouville problem in the y-direction. The 
solution is easily shown to be 

@(x, y, 2, t )  = Qe + @O, (3.28) 

and 
nn (n-+)n 
a 

A,=--, n = O 1 2  , , , . - .>  ' Y n = a  , n= 1,  2, 3, ... . (3.30a, b)  

These solutions are a generalization (to a sloping bottom and progressive waves) of 
the work of Madsen (19741, who studied three-dimensional standing waves generated 
by a wavemaker in a constant-depth wave tank. 

For the breakwater-gap boundary conditions, the coefficients A ,  and B, are 

- %(A, sin A, L cos A, L - A, cos A, L sin A, L)  
A ,  = 

(k2-  A;)ta(A; - A;) 
( 3 . 3 1 ~ )  

(3.31 b)  
2(y, sin A, L cos yn L - A, cos A, L sin y n  L)  

B, = (P - 7;); a(Ai - y') 
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FIGURE 7. Propagation of a wavetrain through a gap into a channel for normal incidence. 
Displayed area is 1016 m wide, 762 m long. Contours are every 4 m. 

FIGURE 8. Propagation of a wavetrain through a gap into a channel for a 20' angle of 
incidence. Displayed area is 1016 m wide, 762 m long. 

Two examples of this solution are shown in figures 7 and 8. The first is for normal 
incidence into a channel, 1016 m wide and a constant 10 m deep, and a gap of width 
100 m. The influence of the channel sidewalls becomes important far from the gap. 
For this case, only 20 terms for each series are needed as the remainder of the terms 
in the infinite series are evanescent. Figure 8 is for 20" angle of incidence a t  the gap. 
As the diffracted waves impinge on the sidewall, reflection occurs, which results in a 
short-crested wave pattern. Since the model is valid up to 90" angles, the reflection 
pattern is set up very rapidly in the model, as shown in figure 8. 
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FIGURE 9. An example of the amplitude spectral modification with distance from breakwater gap 
(Figure 3). Curves decrease monotonically with each Ax. (Ax = 5.41 m.) 

4. Conclusion and discussion 
Wide-angle models permit the prediction of wave characteristics in regions where 

diffraction is very strong, such as might occur in front of wavemakers and behind 
breakwaters or offshore islands. For depths varying in the x-direction only, the initial 
wave field a t  x = 0 is resolved into Fourier components, which then propagate 
independently in the x-direction with wave phase functions dependent on k and h 
alone, and not gradients of wave amplitude, as might be expected from (3 .26b) ,  
which governs the total wave field. The Fourier components are not affected by the 
curvature of the wave crest; the associated eikonal equation for these wave 
components is simply 

found from the integrand of (3.9). Snell’s law is exactly satisfied by these progressive 
modes ; the wavenumber A remains constant during the shoaling process. 

Those waves with wavenumbers in the y-direction exceeding the wavenumber k 
are evanescent and most of these decay rather rapidly (within several Ax, where we 
have taken Ax = Ay). Thus, the evolving wave field in a diffracting domain is a result 
of the decay of the evanescent modes and the angular dispersion of the progressive 
modes, as they all propagate in different directions. 

As an example of the decay of the Fourier components, the amplitude spectra, 
Id(x, A)l (defined as the integrand of (3.9), excluding the exponential terms) of the 
waves in figures 2 and 3 are shown for m = 1 to $N in figure 9. The uppermost curve 
shows the initial amplitude spectrum at x = 0, while the remaining curves are for 

s, = (IC2-h2$, (4.1) 
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x = nAx, n = 1 , 2 ,  3. The rapid decay of the evanescent modes is obvious, occurring 
over distances much shorter than a wavelength (approximately 1562 for this 
case). 

The derivations and results here are for linear theory. The influence of wave 
amplitude on wave celerity and direction are well known and can affect very strongly 
the results shown here. These models will remain valid as long as the ratio of 
diffraction terms to the nonlinearity is large, or 

where 

% K(A12, 
v-  (CC, VA) 

cc, 
cosh 4kh + 8 - 2 tanh2 kh 

8 sinh4 kh 
K = k3-  

This relationship is obtained from the eikonal equation for the nonlinear mild-slope 
equation developed by Kirby & Dalrymple (1984). 

Partial support for this research was provided to RAD by the NOAA Office of Sea 
Grant, Department of Commerce under Grant NA86AA-D-SG040. JTK ack- 
nowledges the support of the Office of Naval Research through Grant N00014-86-K- 
0790. 

Appendix A. A Green-function approach to the constant-depth wave 
potential 

analogue to the Helmholtz Theorem (Baker & Copson 1950), 
Using Green's Second Identity, we can readily derive Weber's two-dimensional 

where G(z, y ; ~ ,  g) = H F ) ( k y l ) ,  the Hankel function of the first kind; rl = [ ( Y - x ) ~  
+(5-y)2]1", the distance from the boundary point (11, c), to (2,  y), and the normal 
derivatives are positive outward from the domain boundary, S. The line integral in 
this case encompasses the half-plane, x > 0. This equation has been used in the study 
of harbour resonance by Lee (1971). For $(x, y), which satisfies the Sommerfeld 
radiation condition, the integral (A 1)  is reduced to an integral along the y-axis 

Alternative solutions that do not require # or its derivative along the axis are 
obtained with a Green function that is zero (or its normal derivative is zero) along 
the y-axis. 

The two possibilities are 
G- = Hil ) (kr l )  --Hi1)(kr2),  

G+ = Hhl)(krl) + H i 1 ) ( k r 2 ) .  

(A 3) 

where r2 = [ (q+~)~+( (5 -y )~ ] ; ,  the distance from the boundary point to an image 
point about the y-axis, or 

(A 4) 
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Substituting these into (A 2), 
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and 

~ ) H ~ ' [ L ( x ~ + ( ~ - ~ ) ~ ) ~ ]  d5. 

The last equation is the same as (3.17).  
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